Sitagliptin
Sitagliptin 是一种有效的 DPP4 抑制剂,在 Caco-2 细胞中,IC50 值为 19 nM。
MCE 的所有产品仅用作科学研究,我们不为任何个人用途提供产品和服务
Sitagliptin生物活性
体外
西他列汀磷酸盐对DPP-4具有有效的抑制作用,Caco-2细胞提取物的IC50为19 nM 。 西他列汀通过涉及cAMP / PKA / Rac1激活的途径减少分离的脾CD4 T细胞的体外迁移。 Stagliptin发挥新的直接作用,以通过DPP-4非依赖性蛋白激酶A-和MEK-ERK1 / 2依赖性途径刺激肠L细胞分泌GLP-1。 它降低了自身免疫对移植物存活的影响
体内
在体内,西格列汀磷酸盐抑制血浆DPP-4活性的ED50值在给药后7小时和自由喂养的Han-Wistar大鼠中给药后24小时30mg / kg时计算为2.3mg / kg [1]。 链脲佐菌素诱导的1型糖尿病小鼠模型在血浆中表现出升高的DPP-4水平,其在西格列汀磷酸盐饮食中可在小鼠中基本上被抑制。 这是通过对高血糖的调节产生积极影响来实现的,可能通过延长胰岛移植物的存活率[4]。 Sitagliptin phosphate的血浆清除率和分布容量在大鼠(40-48 mL / min / kg,7-9 L / kg)中高于狗(9 mL / min / kg,3 L / kg); 大鼠的半衰期较短,2小时与狗的4小时相比
Sitagliptin溶剂溶解度
体内:
1、 逐个添加每种溶剂:10%DMSO 90%(20%SBE-β-CD在盐水中)
溶解度:≥2.5mg / mL(6.14 mM); 明确解决方案
2、逐个加入每种溶剂:10%DMSO 90%玉米油
溶解度:2.5 mg / mL(6.14 mM); 明确解决方案 需要加热到60°C
3、逐个添加每种溶剂:10%DMSO 40%PEG300 5%Tween-80 45%盐水
溶解度:≥2.5mg / mL(6.14 mM); 明确解决方案
Sitagliptin实验参考方法
激酶测定
DPP-4从汇合的Caco-2细胞中提取。 在室温下用裂解缓冲液(10mM Tris-HCl,150mM NaCl,0.04U / mL抑肽酶,0.5%Nonidet P40,pH8.0)孵育5分钟后,将细胞在35,000g,4℃下离心30分钟。 ,将上清液保存在-80℃。 通过将20μL适当的化合物稀释液与50μL用于DPP-4酶,H-Ala-Pro-7-酰氨基-4-三氟甲基香豆素(测定中的最终浓度,100μM)和30μL的底物混合来进行测定。 Caco-2细胞提取物(用100mM Tris-HCl,100mM NaCl,pH7.8稀释1000倍)。 将板在室温下孵育1小时,并使用SpectraMax GeminiXS在405 / 535nm的激发/发射波长下测量荧光。 在具有高抑制剂浓度的Caco-2细胞提取物预孵育1小时后测定来自DPP-4酶的抑制剂的解离动力学(BI 1356为30nM,维达列汀为3μM)。 在用测定缓冲液稀释预孵育混合物3000倍后,通过加入底物H-Ala-Pro-7-酰氨基-4-三氟甲基香豆素开始酶促反应。 在这些条件下,在存在或不存在抑制剂的情况下在某一时间点DPP-4活性的差异反映了仍然与DPP-4酶结合的该抑制剂的量。 使用SpectraMax的SoftMax软件计算10分钟间隔的最大反应速率(荧光单位/秒×1000),并校正未抑制反应的速率[(vcontrol-vinhibitor)/ vcontrol]。
MCE尚未独立确认这些方法的准确性。 它们仅供参考。
细胞分析
将CD4T细胞接种在无血清RPMI 1640的膜插入物上,并在存在或不存在纯化的猪肾DPP-4(32.1单位/ mg; 100mU / mL终浓度)的情况下使用Transwell小室(Corning)测定细胞迁移。 浓度)和DPP-4抑制剂(100μM)。 1小时后,机械除去上表面的细胞,计数迁移到下室的细胞。 迁移程度相对于对照样品表示。
MCE尚未独立确认这些方法的准确性。 它们仅供参考。
Animal Administration
小鼠:在口服葡萄糖负荷(2g / kg)的化合物给药后45分钟,对隔夜禁食的C57BL / 6J小鼠进行攻击。 用于葡萄糖测量的血液样品通过尾部给药前和葡萄糖负荷后的连续时间点获得。 为了评估对葡萄糖耐量的影响持续时间,在葡萄糖激发前16小时施用载体或DPP-4抑制剂。
MCE尚未独立确认这些方法的准确性。它们仅供参考。
MCE 的所有产品仅用作科学研究,我们不为任何个人用途提供产品和服务
Sitagliptin生物活性
体外
西他列汀磷酸盐对DPP-4具有有效的抑制作用,Caco-2细胞提取物的IC50为19 nM 。 西他列汀通过涉及cAMP / PKA / Rac1激活的途径减少分离的脾CD4 T细胞的体外迁移。 Stagliptin发挥新的直接作用,以通过DPP-4非依赖性蛋白激酶A-和MEK-ERK1 / 2依赖性途径刺激肠L细胞分泌GLP-1。 它降低了自身免疫对移植物存活的影响
体内
在体内,西格列汀磷酸盐抑制血浆DPP-4活性的ED50值在给药后7小时和自由喂养的Han-Wistar大鼠中给药后24小时30mg / kg时计算为2.3mg / kg [1]。 链脲佐菌素诱导的1型糖尿病小鼠模型在血浆中表现出升高的DPP-4水平,其在西格列汀磷酸盐饮食中可在小鼠中基本上被抑制。 这是通过对高血糖的调节产生积极影响来实现的,可能通过延长胰岛移植物的存活率[4]。 Sitagliptin phosphate的血浆清除率和分布容量在大鼠(40-48 mL / min / kg,7-9 L / kg)中高于狗(9 mL / min / kg,3 L / kg); 大鼠的半衰期较短,2小时与狗的4小时相比
Sitagliptin溶剂溶解度
体内:
1、 逐个添加每种溶剂:10%DMSO 90%(20%SBE-β-CD在盐水中)
溶解度:≥2.5mg / mL(6.14 mM); 明确解决方案
2、逐个加入每种溶剂:10%DMSO 90%玉米油
溶解度:2.5 mg / mL(6.14 mM); 明确解决方案 需要加热到60°C
3、逐个添加每种溶剂:10%DMSO 40%PEG300 5%Tween-80 45%盐水
溶解度:≥2.5mg / mL(6.14 mM); 明确解决方案
Sitagliptin实验参考方法
激酶测定
DPP-4从汇合的Caco-2细胞中提取。 在室温下用裂解缓冲液(10mM Tris-HCl,150mM NaCl,0.04U / mL抑肽酶,0.5%Nonidet P40,pH8.0)孵育5分钟后,将细胞在35,000g,4℃下离心30分钟。 ,将上清液保存在-80℃。 通过将20μL适当的化合物稀释液与50μL用于DPP-4酶,H-Ala-Pro-7-酰氨基-4-三氟甲基香豆素(测定中的最终浓度,100μM)和30μL的底物混合来进行测定。 Caco-2细胞提取物(用100mM Tris-HCl,100mM NaCl,pH7.8稀释1000倍)。 将板在室温下孵育1小时,并使用SpectraMax GeminiXS在405 / 535nm的激发/发射波长下测量荧光。 在具有高抑制剂浓度的Caco-2细胞提取物预孵育1小时后测定来自DPP-4酶的抑制剂的解离动力学(BI 1356为30nM,维达列汀为3μM)。 在用测定缓冲液稀释预孵育混合物3000倍后,通过加入底物H-Ala-Pro-7-酰氨基-4-三氟甲基香豆素开始酶促反应。 在这些条件下,在存在或不存在抑制剂的情况下在某一时间点DPP-4活性的差异反映了仍然与DPP-4酶结合的该抑制剂的量。 使用SpectraMax的SoftMax软件计算10分钟间隔的最大反应速率(荧光单位/秒×1000),并校正未抑制反应的速率[(vcontrol-vinhibitor)/ vcontrol]。
MCE尚未独立确认这些方法的准确性。 它们仅供参考。
细胞分析
将CD4T细胞接种在无血清RPMI 1640的膜插入物上,并在存在或不存在纯化的猪肾DPP-4(32.1单位/ mg; 100mU / mL终浓度)的情况下使用Transwell小室(Corning)测定细胞迁移。 浓度)和DPP-4抑制剂(100μM)。 1小时后,机械除去上表面的细胞,计数迁移到下室的细胞。 迁移程度相对于对照样品表示。
MCE尚未独立确认这些方法的准确性。 它们仅供参考。
Animal Administration
小鼠:在口服葡萄糖负荷(2g / kg)的化合物给药后45分钟,对隔夜禁食的C57BL / 6J小鼠进行攻击。 用于葡萄糖测量的血液样品通过尾部给药前和葡萄糖负荷后的连续时间点获得。 为了评估对葡萄糖耐量的影响持续时间,在葡萄糖激发前16小时施用载体或DPP-4抑制剂。
MCE尚未独立确认这些方法的准确性。它们仅供参考。